SYSMAC CP1H

Multi-functionality Condensed into an All-in-one Package

OMRON Corporation Shiokoji Horikawa, Shimogyo-ku Kyoto, 600 --8530 Japa
Tel: $(81175-344-7109$ Tel: $(81) 75-344-7109$
Fax: $(81) 75-344-7149$ Regional Headquarters Wegalaan 67-69, NL-2132 JD Hoofddor The Netherlands
Tel: $(311) 2356-81-30$ Tel: ($(31) 2356-81-300$
Fax: $(31) 2356-81-388$
omron electronics lic OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, East Commerce Drive, Schaumburg,
IL 60173 U.S.
Tel: $11847-843-7900 /$ Fax: (1) $1847-843-8568$ OMRON ASIA PACIIIC PTE. LTD. 83 Clemenceau Avericue,
$\# 11-01, ~ U E ~$ 83 Clemenceau Aven
$\# 11-01$, UE Square,

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Towe 200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120 C Pel: (86)21-5037-2222/Fax: (86)11-5037-2200

Expanded Range of Applications with Built-in Pulse Outputs for 4 Axes,
Analog I/O, and Serial Communications, and with a USB Port as a Standard Feature.

Pulse Output Function
Four Axes are Standard.
Advanced Power for High-precision Positioning Control.
Electrolytic Capacitor Assembly by Electronic Component Manufacturing Equipment
Sheet Feeding for Vertical Pillow Packer

A Full Range of Functions
■Origin Search Function (ORG Instruction) Origin searches are possible with a single ORG instruction.
\square Positioning with Trapezoidal Acceleration and Deceleration (PLS2 Instruction)

CP1H-Y CPU Units offer built-in 1-MHz line-driver I/O. - Line-driver outputs: Two each for CW and CCW. - Line-driver inputs: Two each for phases A, B, and Z. CP1H-Y CPU Units also have 20 normal I/O points (12 inputs and 8 outputs), and can provide $100-\mathrm{kHz}$ high-speed counter inputs for two axes and $30-\mathrm{kHz}$ pulse outputs for two axes.

High-speed Counter Function
Differential Phases for Four Axes Are Standardy"피 Easily Handles Multi-axis Control with a Single Unit.

Main-axis Control for Equipment Such as Textile Machinery or Spinning Machinery

Four-axis Counter Function (Single-phase or Differential Phases) CP1H-Y CPU Units: Two axes, single-phase at 1 MHz or differential phases at 500 kHz plus two axes, single-phase at 100 kHz or differential phases at 50 kHz
CP1H-X \square CPU Units: Four axes, single-phase at 100 kHz or differential phases at 50 kHz
Multi-axis counter inputs enable calculations for inverter positioning, spindle speed control in textile manufacturing, and much more.

Up to Eighit Interupt Inputs Con Be Used

Eight interrupt inputs are built in. Quick-response inputs for pulse widths of $50 \mu \mathrm{~s}$. The interrupt inputs can also be used as singlephase counters. (Response frequency: 5 kHz total for 8 inputs)

The 8 normal inputs (6 for Y CPU Units) can be selected in the PLC Setup as interrupt, quick-response, or counter inputs.

Analog I/O

Four Input Words and Two Output Words for XA CPU Units. Analog Control and Monitoring with Only a Single CPU Unit

Sismart

Serial Communications

A Standard USB Port and Two Serial Ports Enable Connections
and Communications with a Wide Range of Components.

Surface Inspections Using Inspection Devices
Mechanisms to Prevent Careless Mistakes in Cell Production (Such as Forgetting to Tighten Screws)
Oil Pressure Control in Forming Machines
Up to two Option Boards can be mounted for RS-232C or RS-422A/485 communications. A peripheral USB port has been added to connect to a personal computer for a total of three communications ports, making it easy to simultaneously connect to a a Pr, various components (such as inverters, Temperat

Connecting Inverter Speed Control Is Made Simple Using the Modbus-RTU Easy Master
Using the Modbus-RTU Easy Master. When the address, function, and data for a slave device are preset in a fixed memory area (DM Area), a message can be sent or received simply by turning ON in the PLC.

When multiple boilers are being controlled, up to 10 words/Unit of data for settings and monitoring can be (or CJ1M) CPU Units PLC Links can be used with eith serial port 1 or serial port 2.
 CP1H. Each is treated as one slave node.

A Programming Environment That Shortens Design Time for the Ever-increasing Size and Complexity of Programs.

A Wealth of Instructions

\rightarrow PID Instruction with Autotuning
PID constants can be automatically tuned for the PID instruction. The limit cycle method is used for tuning, allowing tuning to be completed quickly.

- Floating-point Decimal Instructions,

Trigonometric Instructions, and More. pproximately 400 instructions for ladder programming.

The Structured Text (ST) Language Makes
Arithmetic Operations Even Easier.
In addition to ladder programming, function block logic can be written in ST language, which conforms to IEC 61131-3. Arithmetic processing is also possible with ST, including processing of absolute values, square roots, logarithms, and rigonowe is difficult to write in ladder Processing that is difficult to write in ladder programming becomes easy using structured text.

Structured Text Commands (Keywords) TRUE, FALSE.
 IF, THEN, ELSE, ELSIF, END_IF
 DO, WHILLE, END_WHILE. REPEAT UNTILEND REPEAT.
 REPEAT, UNTLL, ENDRREPEA FOR, TO, BY, DO, END FOR. CAAE, OF, EXIT, RETUND.CASE.

Operators
Addition ($($), Subtraction ($(-)$, Multiplication (*), Division ()
Parenthesis ((brackets) Alray Parenthesis (brackets), Array Indexing (square brackets [1)
Assignment Operator $(:=1$, Less Than Comparison Operator ($)$, Less Than or Equal To Comparison Operator ($<=$), Greater Than Comparison Operator (>) Greater Than or Equal To Comparison Operator ($>=$), Equals Comparison Operator ($($).
Is Not Equal To Comparison Operator (\ll)
Is Not Equal To Comparison Operator ((<>),
Bitwise AND (AND or \&), Bitwise OR (OR), Exclusive OR (XOR), Bitwise AND (AND or \&), Bitwise
NOT (NOT), Exponentiation (**)
Numerical Functions and Arithmetic Functions
ABS, SORT, SORT, LN, LOG, EXP, SIN
ABS,
ATAN, EXPT ATAN, EXPT

Communications Programs Are Provided by the Function Block Library.

The OMRON Function Block (FB) Library provides function blocks for setting SPs, reading PVs, and reading and writing RUN/STOP status and other Temperature Controller parameters. The programmer simply pastes function blocks from the FB Library into the ladder program. The desired functions can be utilized simply by inputting the Temperature Controller unit number and address. The ladder programs used for various
communications can be created from the FB Library, thereby greatly reducing the number of working hours required for program development and debugging

-Security
Eight-character Password Protection

Advanced Settings Can Be Made with No Need for a Manual, Not Only for the PLC but Even for Special I/O Unit and CPU Bus Unit Parameters and FA Networks.

Easy-to-use Programming Software.
Programming with Function Blocks (Ladder Diagrams/ST Language) Is Also Standard.

CX-Programmer Nef. 6.1 ortigheer

Shortcut keys can be easily checked using the ladder key guide. Programming is simplified by key inputs, such as the (C) Key for an NC input (contact), the (Key for an OUT instruction, and the (1) Key for special instructions.
Key inputs are as easy as this: (C) Key, address, (D) Key, comment, (D) Key. The CX-Programmer automatically goes into character input mode when it is time to enter a comment. Special instructions can be input as follows:

Simple key inputs are also available to connect lines.
(C) $+\oplus \oplus \oplus($

Comments can be added for timer and counter instructions through timer and counter input bits.
(1) Consecutive Address Searches

Pressing the (N) Key (Next) jumps to the next input or output bit with the same address.
Pressing the (B)Key (Back) jumps back to the previous input or
output bit with the same address.
(2) Trace Searches

Pressing the Space Bar with the cursor at an input bit jumps to the output bit with the same address. Pressing the Space Bar with the cursor at an output bit jumps to the input bit with the same addres. (3) Cross-reference Popups

Cross-reference information can be displayed for the input or output bit at the cursor to show where the address of the input or output bit is used in the program. Jocation in the program.
lon

■Handle Function Blocks (FB) and Structured Text (ST) Language with Only the CX-Programmer.
Programs using function blocks and ST anguage can be created by reading
function blocks into ordinary ladder programs.

Integrating OMRON PLCs and Component Peripheral Devices.

FA Integrated Tool Package CX-One Configuration	(1) Network Sofiware	CX-Integrator (Ver. 1.10) CX-Protocol (Ver. 1.70) CX-FLnet (Ver. 1.00) NEW
	2 PLC Sofiwa	CX-Programmer (Ver. 6.10) CX-Simulator (Ver. 1.60) SwitchBox (Ver. 1.70)
The CX-One is an FA Integrated Tool Package for connecting, setting, and programming OMRON components including PLCs. CP1H programming and settings can be done with just the CX-Programmer alone, but CX-One is packaged with tools for setting and programming NS-series PTs, Temperature Controllers, and many other components. Using CX-One together with the CP1H makes programming and setup easy, shortening the total lead time required for starting up machines and equipment.	(3) HMI Sofiware	CX-Designer (Ver. 1.00) NEW
	(4) Motion Controller Software	CX-Motion (Ver. 2.20 CX-Motion-NCF (Ver. 1.30) CX-Motion-MCH (Ver. 1.00) NEW CX-Position (Ver. 2.10) CX-Drive (Ver. 1.10) NEW
	© PlC-based Progess Control Sofiware	CX-Process Tool (Ver. 5.00) NS-series Face Plate Auto-Builder (Ver. 2.01)
	(0) Component Sofiware	CX-Thermo (Ver 2.01)

OCX-Integrator

Settings and communications for devices such as other
PLCs, NS-series
PTs, and
Temperature
are connected to a PLC can all be executed
together from the
CX-One CX-
Integrator
d to the
PLC.

Improved Functional Connectivity with HMI Design Software and Integration of Component Software

Configured with an NS-series PT

CX-Designer

The CX-Designer can be started from the CX-
The CX-Designer can be started from the CX-
Integrator's NT Link Window. It can be used to desig screens such as, for example, setting screens for Temperature Controllers. In addition, the Smart Active Parts (SAP) library is provided with the CX-Designer to enable easily creating setting screens for Temperature Components or other components.

Configured with a Temperature Controlle

CX-Thermo

The Support Software for Temperature Controllers (CX Thermo) can be started from the CX-Integrator's Serial Communications Window.
The CX-Thermo Software can be started from a device in
the CX-Integrator's serial communications (CompoWay/F) network.

Handy Built-in Functions
Make Maintenance Easier.

Flexibly Adjust the System Configuration to the Application by Adding Up to 7 CPM-series Expansion I/O Units, Expanding Functionality, and Connecting to Networks.

CJ-series Special I/O Units and CPU Bus Units Can Be Connected to Meet Current Needs or to Expand the System in the Future.

■ Battery-free Operation

The values in the DM Area (32 Kwords) are saved in
CPU Unit's built-in flash memory as initial values, and can be read at startup. Battery-free operation is also possible when saving production data and
DM Area, turning OFF the power, and using then same data again for the next production run.

Note:
-A battery is required for the clock
function and to retain the status of function and to retain the status of
HR Area bits and counter values. -A A batea bitrs is and coundeder values.
feature with the ted CPU Unit. - feature with the CPU Unit.
-The user program (ladder program) is stored in buit--in flash
memory, so no battery is required memory, so no battery is required
to back it up.
An analog adjustment and an external analo setting input connector are provided.

-Analog Adjustment The analog adjustment
has a resolution of 256 . Values are entered in A642 and can be used
in the ladder program in the ladder program
When the value is changed, it is displayed
(0 to FF) for three $(0$ to FF) for three
seconds on the 7 seconds on the
segment display.

A maximum of seven CPM1A Expansion I/O Units can be connected. For details on Unit restrictions, refer to page 16.

Expansion I/O Units can also be wired below by using CP1W-CN811 I/O Connecting Cable.

Input Connalog Setting Input Connector This connector has a resolution of
256 and is used for an analog input set to 0 to 10 V. Each CP1H CPU Unit has one of these connectors built in. (The built-in
analog //O for CP1H-XA CPU Unit is separate.) A device, such as a
potentiometer, can be connected and control from a control panel. The maximum cable enghth is 3
meters. A connecting cable 1 meters. A connecting cable (1 m)
is included with the CPU Unit.

Memory Cassette

Data, such as programs and initial memory values, can be stored on opied to Cassette (optional)

- Copied to other systems. used when installing new versions of application programs.

Status Displayed on

7-segment Display
The 7 -segment display provides
In addition to displaying error codes for errors detected by the PLC, codes can be displayed on the display from the ladder program. maintenance as display is useful for problems that arise during system operation to be grasped without using any Support Software.

An Complete CPU Unit Lineup Lets You Select the Optimum Unit for Your Applications.

CPM-series Expansion I/O Can Be Used without Alteration for
Easy System Expansion.

CP1H-XA40D $\square-\square$ (CP1H-XA CPU Units) Built-in Analog I/O	CP1H-X40D (CP1H-X CPU Units) Basic Model	CP1H-Y20D \square - \qquad (CP1H-Y CPU Units) High-speed Positioning (To be released soon.)
CP1H-XA40DR-A AC power supply, 24 DC inputs, 16 relay outputs, 4 analog inputs, 2 analog outputs CP1H-XA40DT-D DC power supply, 24 DC inputs, 16 transistor (sinking) outputs, 4 analog inputs, 2 analog outputs CP1H-XA40DT1-D DC power supply, 24 DC inputs, 16 transistor (sourcing) outputs, \qquad	CP1H-X40DR-A AC power supply, 24 DC inputs, 16 relay outputs CP1H-X40DT-D DC power supply, 24 DC inputs, 16 transistor (sinking) outputs CP1H-X40DT1-D DC power supply, 24 DC inputs, 16 transistor (sourcing) outputs	CP1H-Y20DT-D DC power supply, 12 DC inputs, 8 transistor (sinking) outputs Two 1-MHz line-driver inputs (phases A, B, and Z) and two $1-\mathrm{MHz}$ line-driver outputs (CW and CCW) are provided separately.

	CP1H-XA CPU Units	CP1H-X CPU Units	CP1H-Y CPU Unit
1/0 capacity	24 inputs, 16 outputs		12 inputs, 8 outputs Line-driver inputs: Phases A, B, and Z for 2 axes Line-driver outputs: CW and CCW for 2 axes
High-speed counter	100 kHz (single-phase), 50 kHz (differential phases), 4 axes		1 MHz (single-phase), 500 kHz (differential phases) for 2 axes (line-driver input), 100 kHz (single-phase), 50 kHz (differential phases) for 2 axes (4 axes total)
Pulse output function (Models with Transistor Outputs only)	100 kHz for 2 axes and 30 kHz for 2 axes (4 axes total)		1 MHz for 2 axes (line-driver output), 30 kHz for 2 axes (4 axes total)
Serial communications	USB port (peripheral port) and 2 optional serial ports (either RS-232C or RS-422A/485 Option Boards)		
Analog I/O	4 analog inputs and 2 analog outputs	-	-
Interrupt inputs Quick-response inputs (50-ms width min.)	8 inputs		6 inputs
User program capacity	20 ks		
DM capacity	32 kw		
Maximum number of CPM1A Expansion I/O Units	7 (Refer to page 16 for Unit restrictions.)		
Maximum number of CJ-series Units	2 (CJ-series Special I/O Units and CPU Bus Units only. Refer to page 16 for information on Units that can be used.)		

- Options

- Analog Units

Analog Input Unit
Analog
CPM1A-AD041
-Analog inputs: 4 (resolution: 6,000)

- I/O Connecting Cable

- CJ-series Special I/O Units and CPU Bus Units

Two CJ-series Special I/O Units or CPU Bus Units can be connected by using a CJ Unit Adapter. (For details on Units that can be used, refer to page16.)

CP1W-ME05M
Memory Cassette

CP1W-CIF01 CP1W-CIF01
RS-232C Option Board

CP1W-CIF11 RS-422A/485
Option Board

- Temperature Sensor Units

Maximum Number of Expansion Units That Can Be Connected

A maximum of seven CPM1A Expansion I/O Units can be connected, but the following restrictions apply. 7 Units \geqq Number of group A Units + Number of group B Units x 2

Group A Units Counted in the Seven Connectable Units

Unit type		Model
Expansion I/O Units	$401 / 0$ points	CPM1A-40EDR
		CPM1A-40EDT
		CPM1A-40EDT1
	$201 / 0$ points	CPM1A-20EDR1
		CPM1A-20EDT
		CPM1A-20EDT1
	8 inputs	CPM1A-8ED
	8 outputs	CPM1A-8ER
		CPM1A-8ET
		CPM1A-8ET1
Analog Unit	2 analog inputs, 1 analog output	CPM1A-MAD01
		CPM1A-MAD11
Temperature Sensor Units	2 thermocouple inputs	CPM1A-TS001
	2 platinum resistance thermometer inputs	CPM1A-TS101
CompoBus/S I/ Link Unit	8 inputs, 8 outputs	CPM1A-SRT21
DeviceNet I/O Link Unit	32 inputs, 32 outputs	CPM1A-DRT21

Precautions when Using CP1W-CN811 I/O Connecting Cable

Group B Units that Each Count as Two of the Seven Connectable Units

	nit type	Model
Analog Units	4 analog inputs	CPM1A-AD041
	4 analog outputs	CPM1A-DA041
Temperature Sensor Units	4 thermocouple inputs	CPM1A-TS002
	4 platinum resistance thermometer inputs	CPM1A-TS102

- CJ-series Special I/O Units and CPU Bus Units

A maximum of two CJ-series Special I/O Units or CPU Bus Units can be connected by using a CP1W-EXT01 CJ Unit Adapter. The number of Units that can be used with the CP1H is as described below.
Use CP1W-CN811 I/O Connecting Cable when using CPM1A Expansion IO Units at the same tim
as a CJ Unit Adapter. In this situation the number of CPM1A Expansion /OO Units that can be as a CJ Unit Adapter. In this situation the number of CPM $1 A$ Expansion I/O Units that can be
connected is subject to the restrictions described above.

Unit name	Model	Unit name	Model
Analog Input Units	CJ1W-AD081-V1	$\begin{aligned} & \hline \text { Temperature } \\ & \text { Control Units } \end{aligned}$	CJ1W-TC001
	CJ1W-AD041-V1		CJIW-TC002
Analog Output Units	CJIW-DA08V		CJ1W-TC003
	CJIW-DA08C		CJIW-TC004
	CJIW-DA041		CJ1W-TC101
	CJ1W-DA021		CJ1W-TC102
Analog I/O Unit	CJ1W-MAD42		CJ1W-TC103
Process Input Units	CJ1W-PTS51		CJ1W-TC104
	CJ1W-PTS52	CompoBus/S Master Unit	CJ1W-SRM21
	CJ1W-PTS15		
	CJ1W-PTS16		
	CJ1W-PDC15		

Unit name	Model
Serial Communications Units	CJ1W-SCU41-V1
	CJIW-SCU21-V1
Ethernet Unit	CJ1W-ETN21
DeviceNet Unit	CJ1W-DRM21
Controller Link Unit	CJ1W-CLK21-V1

Specifications

\square CPU Unit Specifications

	Item	AC power supply models：CP1H－पדI－A	DC power supply models：CP1H－पםロ－D
Power supply		100 to $240 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$	24 VDC
Operating voltage range		85 to 264 VAC	20.4 to 26.4 VDC（ 21.6 to 26.4 VDC with four or more Expansion Units．）
Power consumption		100 VA max．	50 W max．
Inrush current			30 Amax .20 ms max ．
External power supply		300 mA at 24 VDC	None
Insulation resistance		20 MW min．（at 500 VDC ）between the external AC terminals and GR terminals	20 MW min．（at 500 VDC ）between the external DC terminals and GR terminals
Dielectric strength		$2,300 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min between the external AC and GR terminals，leakage current： 5 mA max．	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min between the external DC and GR terminals，leakage current： 5 mA max．
Noise immunity		Conforming to IEC $61000-4-4.2 \mathrm{kV}$（power supply line）	
Vibration resistance		10 to $57 \mathrm{~Hz}, 0.075-\mathrm{mm}$ amplitude， 57 to 150 Hz ，acceleration： $9.8 \mathrm{~m} / \mathrm{s} 2$ in X, Y ，and Z directions for 80 minutes each （Sweep time： 8 minutes $\times 10$ sweeps $=$ total time 80 minutes）	
Shock resistance		$147 \mathrm{~m} / \mathrm{s}^{2}$ ，three times each in X, Y ，and Z directions	
Ambient operating temperature		0 to $55^{\circ} \mathrm{C}$	
Ambient humidity		10\％to 90\％（with no condensation）	
Ambient operating environment		No corrosive gas	
Ambient storage temperature		-20 to $75^{\circ} \mathrm{C}$（Excluding battery．）	
Power holding time		$10 \mathrm{~ms} \mathrm{min}$.	$2 \mathrm{~ms} \mathrm{min}$.
Dimensions		$150 \times 90 \times 85 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	
Weight		740 gmax ．	590 gmax ．
	Item	XA CPU Units：CP1H－XAロロロ－ロ	
Control method		Stored program method	
／／0 control method		Cyclic scan with immediate refreshing	
Program language		Ladder diagram	
Function blocks		Maximum number of function block definitions： 128 Maximum number of instances： 256 Languages usable in function block definitions：Ladder diagrams，structured text（ST）	
Instruction length		1 to 7 steps per instruction	
Instructions		Approx． 400 （function codes： 3 digits）	
Instruction execution time		Basic instructions： 0.10 нs min．Special instructions： 0.15 нs min．	
Common processing time		0.7 ms	
Program capacity		20 Ksteps	
Number of tasks		288 （ 32 cyclic tasks and 256 interrupt tasks） Scheduled interrupt tasks： 1 （interrupt task No．2，fixed） Input interrupt tasks： 8 （interrupt task No． 140 to 147，fixed）， 6 for Y CPU Units High－speed counter interrupt tasks： 256 （interrupt task No． 0 to 255）	
Maximum subroutin number		256	
Maximum jump number		256	
$\begin{aligned} & 1 / 0 \\ & \text { arase } \\ & \text { s.oes } \\ & \text { noied.) } \end{aligned}$	Input bits	1，600 bits（100 words）：ClO 0.00 to ClO 99.15 （The 24 built－in inputs are allocated in ClO 0.00 to ClO 0.11 and ClO 1.00 to ClO 1．11．）	
	Output bits	1，600 bits（100 words）：CIO 100.00 to C10 199.15 （The 16 built－i outputs aferser	re allocated in C10 100.00 to C10 10．07 and CIO 010．00 to Clo 101．07．）
	Builtin Analog Inputs	ClO 200 to ClO 203	－
	Builtin Analog Outputs	C10 210 to ClO 211	－
	$\begin{array}{\|l\|l\|} \hline \text { Serial PLC Link } \\ \text { Area } \end{array}$	1，440 bits 990 words）：C10 3100．00 to ClO 3189.15 （C1O 3100 to ClO	
Work bits		8,192 bits（ 512 words）：W000．00 to W511．15（W0 to W511） 37,504 bits（2，344 words）：CIO 3800.00 to CIO 6143.15 （CIO 3800 to CIO 6143）	
TR Area		16 bits：TR0 to TR15	
Holding Area		8，192 bits（512 words）：H0．00 to H511．15（H0 to H511）	
AR Area		Read－only（Write－prohibited）： 7168 bits（ 448 words）：A0．00 to A447．15（A0 to A447） Read／Write： 8192 bits（ 512 words）：A448．00 to A959．15（A448 to A959）	
Timers		4，096 bits：To to T4095	
Counters		4，096 bits：C0 to C4095	
DM Area（See note．）		32 Kwords：Do to D32767	
Data Register Area		16 registers（16 bits）：DR0 to DR15	
Index Register Area		6 registers（16 bits）： RO 0 to 1 R15	
Task Flag Area		32 flags（32 bits）：TK0000 to TK0031	
Trace Memory		4,000 words（ 500 samples for the trace data maximum of 31 bits and 6 words．）	
Memory Cassette		A special Memory Cassette（CP1W－ME05M）can be mounted．Note：Can be used for program backups and auto－booting．	
Clock function		Supported．Accuracy（monthly deviation）：-3.5 min to -0.5 min （ambient temperature： $55^{\circ} \mathrm{C}$ ）， -1.5 min to +1.5 min （ambient temperature： $25^{\circ} \mathrm{C}$ ），-3 min to +1 min （ambient temperature： $0^{\circ} \mathrm{C}$ ）	
Communications functions		One built－in peripheral port（USB1．1）：For connecting Support Software only．A maximum of two Serial Communications Option Boards can be mounted．	
Memory backup		Flash memory：User programs，parameters（such as the PLC Setup），comment data，and the entire DM Area can be saved to flash memory as initial values Battery backup：The Holding Area，DM Area，and counter values（flags，PV）are backed up by a battery．	
Battery service life		5 years at $25^{\circ} \mathrm{C}$ ．（Use the replacement battery within two years of manufacture．）	

Item	XA CPU Units：CP1H－XAロロロ－ם	x CPU Units：CP1H－XロID－प	CY CPU Units：CP1H－Yロपם－ם
Built－in input terminals	40 （24 inputs， 16 outputs）		20 （12 inputs， 8 outputs） Line－driver inputs：Two axes for phases A，B，and Z Line－driver outputs：Two axes for CW and CCW
Number of connectible Expansion（I／O）Units	CPM1A Expansion IOO Units： 7 max．；CJ－series Special IOO Units or CPU Bus Units： 2 max．		
Max．number of／O points	320 （40 built in +40 per Expansion（／／）Unit $\times 7$ Units）		300 （20 built in +40 per Expansion（1／0）Unit $\times 7$ Units）
Interrupt inputs	8 inputs（Shared by the external interrupt inputs（counter mode）and the quick－response inputs．）		6 inputs（Shared by the external interrupt inputs （counter mode）and the quick－response inputs．）
Interrupt inputs counter mode	8 inputs（Response frequency： 5 kHz max．for all interrupt inputs）， 16 bits		6 inputs（Response frequency： 5 kHz max． for all interrupt inputs）， 16 bits
Quick－response inputs	8 points（Min．input pulse width： 50 us max．）		6 points（Min．input pulse width： $50 \mu \mathrm{~s}$ max．）
Scheduled interrupts			
High－speed counters	4 inputs：Differential phases（ 4 x ）， 50 kHz or Single－phase（pulse plus direction，up／down，increment）， 100 kHz Value range： 32 bits，Linear mode or ring mode Interrupts：Target value comparison or range comparison		2 innuts：Differential phases（ $4 \times \mathrm{x}$ ）， 500 kHz or Single－phase， 1 MHz and 2 inputs：Differential phases 4 x ）， 50 kHz or Single－phase（pulse plus direction，up／down，increment）， 100 kHz Value range： 32 bits，Linear mode or ring mode
Pulse outputs（models with transistor outputs only）	Trapezoidal or S－curve acceleration and deceleration（Duty ratio： 50% fixed） 2 outputs， 1 Hz to 100 kHz （CCW／CW or pulse plus direction） 2 outputs， 1 Hz to 30 kHz （CCW／CW or pulse plus direction） PWM outputs ：（Duty ratio： 0.0% to 100.0%（Unit： $0.1 \%)$ ）2 outputs， 0.1 to $1 \mathrm{kHz}($ Accuracy $\pm 5 \%$ at 1 kHz$)$		Trapezoidal or S－curve acceleration and deceleration （Duty ratio：50\％fixed） 2 outputs， 1 Hz to 1 MHz （CCW／CW or pulse plus direction） 2 outputs， 1 Hz to 30 kHz （CCW／CW or pulse plus direction PWM outputs ：（Duty ratio：0．0\％to 100.0%（Unit： 0.1% ） 2 outputs， 0.1 to 1 kHz （Accuracy：$\pm 5 \%$ at 1 kHz ）
Built－in analog／／0 terminals	4 analog inputs and 2 analog outputs （Refer to separate detailed specifications．）		None
Analog control	1 （Setting range： 0 to 255）		
External analog input	1 input（Resolution： $1 / 256$, Input range： 0 to 10 V ）		
\square Serial Communications Specifications			
Item	Function		Interface
Peripheral USB port	For connecting Peripheral Device．		Conforms to USB 1．1，B－type connector
Serial port 1	Host Link，No－protocol，NT Link（1：N），Serial PLC Link（See note．）， Serial Gateway（CompoWay／F master，Modbus－RTU master）， Modbus－RTU easy master function		The CP1W－CIF01 RS－232C Option Board पсомм \square or the CP1W－CIF11 RS－422A／485 Option Board
Serial port 2	Host Link，No－protocol，NT Link（1：N），Serial PLC Link（See note．）， Serial Gateway（CompoWay／F master，Modbus－RTU master）， Modbus－RTU easy master function		CP1W－CIF11 RS－422A／485 Option Board used with either port．

Analog I／O Specifications（CP1H－XA CPU Units Only）

	tem	Voltage／／o	Current／／0
	Number of analog inputs	4	
	Input signal range	0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V ，or -10 to 10 V	0 to 20 mA or 4 to 20 mA
	Max．rated input	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
	Exteral inputimpedance	$1 \mathrm{M} \Omega \mathrm{min}$ ．	Approx． 250Ω
	Resolution	1／6，000 or 1／12，000（full scale）	
	Overall accuracy	$25^{\circ} \mathrm{C}: \pm 0.3 \%$ full scale／0 to $55^{\circ} \mathrm{C}: \pm 0.6 \%$ full scale	$25^{\circ} \mathrm{C}: \pm 0.4 \%$ full scale／0 to $55^{\circ} \mathrm{C}$ ：$\pm 0.8 \%$ full scale
	A／D conversion data	Full scale for－ 10 to 10 V：F448（E890）to 0BB8（1770）Hex Full scale for other ranges： 0000 to 1770 （2EEO）Hex	
	Averaging	Supported（Set for individual inputs in the PLC Setup．）	
	Open－circuit detection	Supported（Value when disconnected： 8000 Hex ）	
	Number of outputs	2 outputs	
	Output signal range	0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V ，or -10 to 10 V	0 to 20 mA or 4 to 20 mA
	Allowable external output load resistance	$1 \mathrm{k} \Omega$ min．	600Ω max．
	External output impedance	0.5Ω max．	－
	Resolution	1／6，000 or 1／12，000（full scale）	
	Overall accuracy	$25^{\circ} \mathrm{C}: \pm 0.4 \%$ full scale／0 to $55^{\circ} \mathrm{C}: \pm 0.8 \%$ full scale	
	D／A conversion data	Full scale for－10 to 10 V ：F448（E890）to 0BB8（1770）hex Full scale for other ranges： 0000 to 1770 （2EEO）hex	
Conversion time		$1 \mathrm{~ms} / \mathrm{point}$	
	lation method	Photocoupler isolation between analog 1／0 terminals and	cuits．No isolation between analog／／O signals．

I/O Specifications

Built-in Input Area

$\square X A$ and X CPU Units

$\begin{aligned} & \begin{array}{l} \text { LLC } \\ \text { Setup } \end{array} \end{aligned}$		Input operation			High-speed counter operation	Puse outputo origin search tunction setto be used.
		Normal inputs	Interrupt inputs	Quick-response inputs	High-speed counters	Origin search
$\begin{aligned} & \hline \mathrm{ClO} \\ & 0 \end{aligned}$	00	Normal input 0	Interrupt input 0	Quick-response input 0		Pulse 0 : Origin input signal
	01	Normal input 1	Interrupt input 1	Quickresponse input 1	High-speed counter 2 (phase-Zreset)	Pulse 0 : Origin proximity input signal
	02	Normal input 2	Interupt input 2	Quickresponse input 2	High-speed counter 1 (phase-Zreset)	Pulse output 1 : Origin input signal
	03	Normal input 3	Interrupt input 3	Quick-response input 3	High-speed counter 0 (phase-Zreset)	Pulse output 1 : Origin proximity input signal
	04	Normal input 4			High-speed counter 2 (phase-A, increment, or count input)	
	05	Normal input 5			High-speed counter 2 (phase-B, decrement, or direction input)	
	06	Normal input 6			High-speed counter 1 (phase-A, increment, or count input)	
	07	Normal input 7			High-speed counter 1 (phase-B, decrement, or direction input)	
	08	Normal input 8			High-speed counter 0 (phase-A, increment, or count input)	
	09	Normal input 9			High-speed counter 0 (phase-B, decrement, or direction input)	
	10	Normal inut 10			High-speed counter 3 (phase-A, increment, or count input)	
	11	Normal output 11			High-speed counter 3 (phase-B, decrement, or direction input)	
$\begin{aligned} & \text { cio } \\ & 1 \end{aligned}$	00	Normal inut 12	Interrup input 4	Quick-response input 4	High-speed counter 3 (phase-Zreset)	Pulse output 2 : Origin input signal
	01	Normal inut 13	Interrupt input 5	Quick-response input 5		Pulse output 2 : Origin proximity inut signal
	02	Normal inut 14	Interupt input 6	Quick-response input 6		Pulse output 3 : Origin input signal
	03	Normal inut 15	Interrupt input 7	Quick-response input 7		Pulse output 3 : Origin proximity input signal
	04	Normal inut 16				
	05	Normal inut 17				
	06	Normal inut 18				
	07	Normal inut 19				
	08	Normal inut 20				
	09	Normal inut 21				
	10	Normal inut 22				
	11	Normal inut 23				

\square Y CPU Units

$\begin{gathered} \text { Input } \\ \text { terme } \\ \text { tormine } \\ \text { block } \end{gathered}$		Input operation setting			High-speed counter operation setting High-speed counters	Pulse output origin search function set to be used. Origin search
		Normal inputs	Interrupt inputs	Quick-response inputs		
$\begin{aligned} & c_{10}^{c} \\ & 0 \end{aligned}$	00	Normal input 0	Interupt input 0	Quick-esponse input 0		Pulse 0: Origin input signal
	01	Normal input 1	Interupt input 1	Quick-esponse input 1	High-speed counter 2 (phase-/reset)	Pulse 0 : Origin proximity input signal
	02	--	--	--	High-speed counter 1 (phase-Z/resel) fived	
	03	--	--	--	High-speed counter 0 (phase-z/reseli) fixed	
	04	Normal input 4			High-speed counter 2 (phase-A, increment, or count input)	
	05	Normal input 5			High-speed counter 2 (phase-B, decrement, or direction input)	
	06	--	--	--	High-spegd counter 1 (phase A, incerment, or count input fived	
	07	--	--	--	Highspeed counter 1 (phase B, dearement, ordircation inpul) ited	
	08	--	--	--	High spead counter O Pophase A, inceremt, or count input fixed	
	09	--	--	--	Highspeed countero Ophase B, dearement, ordirection inuut ived	
	10	Normal input 10			High-speed counter 3 (phase-A, increment, or count input) fixed	
	11	Normal input 11			High.speed counter 3 (phase-B, decrement, or direction input) fixed	
$\mathrm{c}_{1}^{\mathrm{co}}$	00	Normal input 12	Interupt input 4	Quick-esponse input 4	High-speed counter 3 (phase-/reset)	Pulse output 1: Origin input signal
	01	Normal input 13	Interupt input 5	Quick-esponse input 5		Pulse output 2: Origin input signal
	02	Normal input 14	Interupt input 6	Quick-esponse input 6		Pulse output 3 : Origin input signal
	03	Normal input 15	Interupt input 7	Quick-esponse input 7		Pulse output $1:$ Orgigin proximity input signal
	04	Normal input 16				Pulse output: 2 Origin proximity input signal
	05	Normal input 17				Pulse output 3 : origin proximity input signal

These areas are for line.driver inputs, so they are can be used only for high.speed counters 11 MHz) and not for other purposes, such as ormal inputs.

Built-in Output Area

Instructions/ PLC Setup		$\begin{gathered} \text { When the } \\ \text { instructions to the } \end{gathered}$	When a pulse output instruction (SPED, ACC, PLS2, or ORG) is executed		When the origin search function is set to be used in the PLC Setup, and an origin	When the PWM instruction is executed	
		executedNormal output	Fixed duty ratio pulse output			Variable dutr ratio pulse output	
		cw/ccw	Pulse plus direction	When the origin search function is used	PWM output		
$\begin{gathered} c_{100}^{100} \end{gathered}$	00		Normal output 0	Pulse output 0 (CW)	Pulse output 0 (pulse)		
	01	Normal output 1	Pulse output 0 (CWW)	Pulse output 1 ((pulse)			
	02	Normal output 2	Pulse output 1 (CW)	Pulse output 0 (direction)			
	03	Normal output 3	Pulse output 1 (CCW)	Pulse output 1 (direction)			
	04	Normal output 4	Pulse output 2 (CW)	Pulse output 2 (pulse)			
	05	Normal output 5	Pulse output 2 (CCW)	Pulse output 2 (direction)			
	06	Normal output 6	Pulse output 3 (CW)	Pulse output 3 (pulse)			
	07	Normal output 7	Pulse output 3 (CCW)	Pulse output 3 (direction)			
$\begin{aligned} & \text { cio } \\ & 100 \end{aligned}$	00	Normal output 8				PWM output 0	
	01	Normal output 9				PWM output 1	
	02	Normal output 10			Origin search 0 (Error counter reset output)		
	03	Normal output 11			Origin search 1 (Error counter reset output)		
	04	Normal output 12			Origin search 2 (Error counter reset output)		
	05	Normal output 13			Origin search 3 (Error counter reset output)		
	06	Normal output 14					

- Y CPU Units

CP1H CPU Unit Terminal Block Arrangement

$\stackrel{\text { - CPiH-X } \square \text { CPU Units }}{\text { with AC power supply }}$	
- ${ }^{\text {CPITH-X }}$ CPPU Units with DC power supply	
- CP1H-Y CPU Units	

- Built-in Analog IOOTerminal Slock Arrangement for
CP1H-XA CPU Units
$\begin{aligned} & \text { Voltage input } \\ & \text { (default setting) }\end{aligned}$

0000000 000000000

I/O Specifications

Input Specifications

Hem	Specifications		
CPIH-AAX CPU Units	C10 0.04 to clio 0.11		C10 1.04 toclo
CPIH-Y CPU Units	C10 0.04, C10 0.0.5, 1100.10, c10 0.11	C10 0.00, Clo 0.01 a and Clo 1.0 to to 10.003	C10 1.04, 1010.05
Input voltage	$24 \mathrm{VDC}+10 \% /-15 \%$		
Applicable sensors	2 -wire sensors		
Input impedance	3.3 k 2	3.0 k	4.7 k 2
Input current	7.5 mAtypical	8.5 mAtppical	5 mAtypical
ON voltage	17.0 VDCO min.	17.0 VDC min.	$14.4 \mathrm{vDC} \mathrm{min}$.
OFF voltagelucrent	1 mA max at 5.0 VDC	1 mA max at 5.0 vDC	1 mA max at 5.0 VDC
ON delay	2.5 us max.	50 us max.	1 ms max .
OFF delay	2.5 us max.	50 us max.	1 ms max.
Circuit onfiguration	这	速	

- CP1H-XA/X CPU Units

Input bits: CIO 0.04, CIO 0.06, CIO 0.08, CIO 0.10 (Phase A)

- CP1H-Y CPU Units

Input bits: CIO $0.04, \mathrm{CIO} 0.10$ (Phase A) CIO 0.05, CIO 0.11 (Phase B)
Pulse plus direction input mod
ucrement mode

CP1H-XA/X CPU Units
Input bits: CIO 0.00 to $\mathrm{CIO} 0.03, \mathrm{CIO} 1.00$ to CIO 1.03
CP1H-Y CPU Units
Input bits: CIO 0.00, CIO 0.11, CIO 1.00 to CIO 1.03

■ Output Specifications

Item			Specifications
Max. switching capacity			$2 \mathrm{~A}, 250 \mathrm{VAC}($ cos $\mathrm{s}=1 \mathrm{l}, 2 \mathrm{AA}, 24 \mathrm{VDC} 4 \mathrm{~A}$ (commmon)
Min. switching capacity			$5 \mathrm{VDC}, 10 \mathrm{~mA}$
Service life of relay	Electrical	Resistive load	100,000 operations (24 VDC)
		Inductive load	$48,000$ operations (250 VAC, $\cos \phi=0.4)$
	Mechanical		20,000,000 operations
ON delay			15 ms max.
OFF delay			15 ms max.
Circuit configuration			

$$
\begin{aligned}
& \text { Under the worst conditions, the service life of output contacts is } \\
& \text { as show on the left. } \\
& \text { The service life of relays is as shown in the following diagram }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The service elife e } \\
& \text { as a auideline }
\end{aligned}
$$

\square CPU Units with Transistor Outputs (Sinking/Sourcing)

Note 1 : Fuses cannot be replaced by the

Note:
Do not toply a voltage or connecta load to
an outputerninat exceding the maximum
switching capacity

\square Input Specifications for CPM1A-40EDR/40EDT/40EDT1/20EDR1/20EDT/20EDT1/8ED

Output Specification

$\xrightarrow[\text { Max. switching capacity }]{\text { Item }}$ Max.s switching capacity $\quad 2 \mathrm{~A}, 250 \mathrm{VAC}$

 | relay | Mechanical | $20,000,000$ operations |
| :--- | :--- | :--- | :--- | :--- |

\qquad

Under the worst conditions, the serice lie

OFF Outputs (Sint 15 ms

Item	Specifications			Circuit configuration
	CPM1A-40EDT CPM1A-40EDT1	CPM1A-20EDT CPM1A-20EDT1	CPM1A-8ET CPM1A-8ET1	gouputs.
Max. switching capacity (See note 2.)	4.5 to 30 VDC: 0.3 A/point	$\begin{aligned} & 4 \mathrm{VDC}+10 \% /-5 \% \text { : } \\ & 0.3 \mathrm{~A} \text { Apoint } \end{aligned}$	- OUTOO/OUTO1: 0.2 A/point at 4.5 to 30 VDC - OUTO2 to OUTO7: 0.3 A point at 4.5 to 30 VDC	
	0.9 A/common 3.6 A/common	0.9 A/common $1.8 \mathrm{~A} /$ common	0.9 A/common 1.8 A/common	
Leakage current	0.1 mA max.	0.1 mA max.	0.1 mA max.	
Residual voltage	1.5 V max.	1.5 V max.	1.5 V max.	
ON delay	0.1 ms max.	0.1 ms max.	0.1 ms max.	
OFF delay	1 ms max. at 24 VDC $+10 \% /-5 \%, 5$ to 300 mA	$\begin{aligned} & 1 \mathrm{~ms} \text { max. at } 24 \mathrm{VDC} \\ & +10 \% /-5 \%, 5 \text { to } 300 \mathrm{~mA} \\ & \hline \end{aligned}$	1 ms max. at 24 VDC $+10 \% /-5 \%$, 5 to 300 mA	
Fuse (See note 1.$)$	None	1/common		

Expansion I/O

$\begin{aligned} & \text { Analog Input Unit } \\ & \text { CPM1A-AD041 } \end{aligned}$			
Item		CPM1A-AD041	
		Input voltage	Input current
Number of inputs		4	
Input signal range		0 to $5 \mathrm{~V}, 1$ to 5 V , 0 to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA
Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
External input impedance		$1 \mathrm{M} \Omega$ min.	Approx. 250Ω
Resolution		6000	
Overall accuracy	$25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ of full scale	$\pm 0.4 \%$ of full scale
	0 to $55^{\circ} \mathrm{C}$	$\pm 0.6 \%$ of full scale	$\pm 0.8 \%$ of full scale
Conversion time		$2.0 \mathrm{~ms} / \mathrm{point}$	
AD conversion data		Binary data with resolution of 6,000 Full scale for -10 to 10 V : F448 (E890) to 0BB8 (1770) hex Full scale for other ranges: 0000 to 1770 (2EEO) hex	
Averaging		Supported	
Open-circuit detection		Supported	
Insulation resistance		$20 \mathrm{M} \Omega$ min. (at 250 VDC , between isolated circuits)	
Dielectric strength		500 VAC for 1 min (between isolated circuits)	
Isolation method		Photocoupler isolation (between analog inputs and secondary internal circuits). No isolation between input signals.	

Analog Output Unit
CPM1A-DA041

CPM1A-DA041			
Item		CPM1A-DA041	
	Input voltage		

Analog I/O Units

Item			CPM1A-MAD01		CPM1A-MAD11	
			Voltage I/O	Current //	Voltage //0	Current //0
$\begin{aligned} & \text { 亳 } \\ & \frac{\square}{4} \end{aligned}$	Number of inputs		2 inputs		2 inputs	
	Input signal range		0 to $10 \mathrm{~V}, 1$ to 5 V	4 to 20 mA	0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V , or - 10 to 10 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA
	Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
	External input impedance		$1 \mathrm{M} \Omega$ min.	250Ω rated	$1 \mathrm{M} \Omega$ min.	250Ω
	Resolution		1/256		1/6000 (full scale)	
	${ }^{\text {Overall }}$	$25^{\circ} \mathrm{C}$	1.0\% of full scale		$\pm 0.3 \%$ of full scale	$\pm 0.4 \%$ of full scale
		0 to $55^{\circ} \mathrm{C}$			$\pm 0.6 \%$ of full scale	$\pm 0.8 \%$ of full scale
	A/D conversion data		8-bit binary		Binary data (hexadecimal, 4 digits) -10 to 10 V: F448 to 0BB8 hex Full scale for other ranges: 0000 to 1770 hex	
	Averaging		-		Supported (Set for each input using a DIP switch.)	
	Disconnection detection		-		Supported	
	Number of outputs		1 output		1 output	
	Output signal range		0 to $10 \mathrm{~V},-10$ to 10 V	4 to 20 mA	1 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to 10 V	0 to $20 \mathrm{~mA}, 4$ to 20 mA
	External output max. current		5 mA	-	-	-
	Allowable external output load resistance		-	350Ω	$1 \mathrm{k} \Omega \mathrm{min}$.	600Ω max.
	External output impedance		-		0.5Ω max.	-
	Resolution		$1 / 256(1 / 512$ for output signal range - 10 to 10 V)		1/6,000 (full scale)	
	Overall	$25^{\circ} \mathrm{C}$	1.0\% of full scale		$\pm 0.4 \%$ of full scale	
	accuracy	0 to $55^{\circ} \mathrm{C}$			$\pm 0.8 \%$ of full scale	
	Data setting		8 -bit binary with sign bit		-	
	D/A set data		-		Binary data (hexadecimal, 4 digits) -10 to 10 V: F448 to 0BB8 hex Full scale for other ranges: 0000 to 1770 hex	
Conversion time			$10 \mathrm{~ms} / \mathrm{Unit}$ max. (See note 2.)		$2 \mathrm{~ms} / \mathrm{point}$ ($6 \mathrm{~ms} \mathrm{for} \mathrm{all} \mathrm{points)}$	
Isolation method			Photocoupler isolation between I/O terminals and PLC signals (There is no isolation between the analog I/O signals.)		Photocoupler isolation between analog I/O and internal circuits (There is no isolation between the analog I/O signals.)	

[^0]

■ CPM1A-TS001/TS002/TS101/TS102

By mounting a Temperature Sensor Unit to the PLC, inputs can be obtained from thermocouples
or platinum resistance thermometers, and temperature measurements can be converted to
binary data (4-digit hexadecimal) and stored in the input area of the CPU Unit

ltem	CPM1A-TS001/002	CPM1A-TS101/102
Number of inputs	2 (TS001), 4 (TS002)	2 (TS101), 4 (TS102)
Input types	K, J switchable (Note: Same for all inputs.)	Pt100, JPt100 switchable (Note: Same for all inputs.)
Indication accuracy	TThe larger of the indicated value $\pm 0.5 \%$ and $\pm 2^{\circ} \mathrm{C}$ (See note.) $) \pm 1$ digit max.	[The larger of the indicated value $\pm 0.5 \%$ and $\left.\pm 1^{1} \mathrm{C}\right] \pm 1$ digit max.
Conversion time	$250 \mathrm{~ms} / 2$ points (TS001, TS 101); $250 \mathrm{~ms} / 4$ points (TS002, TS 102)	
Converted temperature data	Binary (4-digit hexadecimal)	
Isolation method	Photocoupler isolation between the temperature input signals.	

Note: The indication accuracy when using a K -type thermocouple for temperatures less than - $100^{\circ} \mathrm{C}$ is $\pm 4^{\circ} \mathrm{C} \pm 1$ digit max.

- Input Temperature Ranges for CPM1A-TS001/002
(The rotary switch can be used to make the following range and
input type settings.)

Input type	Range $\left({ }^{\circ} \mathrm{C}\right)$	Range $\left({ }^{\circ} \mathrm{F}\right)$
K	-200 to 1300	-300 to 2300
	0.0 to 500.0	0.0 to 900.0
J	-100 to 850	-100 to 1500
	0.0 to 400.0	0.0 to 750.0

- Input Temperature Ranges for CPM1A-TS101/102

input type settings.) Input type		
Range $\left({ }^{\circ}\right.$ C)	Range (${ }^{\circ}$ F)	
Pt100	-200 to 650.0	-300 to $1,200.0$
JPt100	-200.0 to 650	-300 to $1,200.0$

- CPM1A-SRT21

CompoBus/S I/O Link Unit
The CompoBus/S I/O Link Unit functions as a slave for a CompoBus/S Master Unit (or an SRM1 CompoBus/S Master Control Unit) to form an /O Link with 8 inputs and 8 outputs between the CompoBus/S I/O Link Unit and the Master Unit.

- Specifications

Item	CompoBus/S Slave
Master/Slave	CompoBus/S Slave
Number of //O bits	8 input bits, 8 output bits
Number of words occupied in CPM2A I/O memory	1 input word, 1 output word (Allocated in the same way as for other Expansion Units)
Node number setting	Set using the DIP switch (before the CPU Unit is turned ON).

- CPM1A-DRT21

DeviceNet I/O Link Unit
By connecting a CPM1A-DRT21 DeviceNet I/O Link Unit, a CPM2A can function as a slave for a DeviceNet Master Unit to establish I/O links for

Dimensions

CP1H CPU Units

CP1H CPU Units (X/XA/Y Type)

CPM1A-8E $\square \square$
CPM1A-SRT21/CPM1A-DRT21 CPM1A-MADO1 CPMIA-MADO

CPM1A-40ED \square

CJ-series Special I/O Units and CPU Bus Units

Instructions

\square Sequence Output Instructions

Sequence Output Instruction

\section*{} | CONDITONAL JUMP | CJJN | 511 |
| :--- | :--- | :--- | MULTPLE JUMP JMPO MULTPLE UUMPENO JMEO FOR-NEXT LOOPS FO | | | 512 |
| :--- | :--- | :--- |
| BREAKLOOP | BREAK | 514 |
| | | |

\square Sequence Output Instructions

■ Data Movement Instructions

- Increment/Decrement Instructions

Instruction	Mnemonic	Function
cocie		

Instruction	Mnemonic	${ }_{\text {Function }}^{\text {Funde }}$
move	mov	${ }^{021}$
double move	MovL	498
Move not	mvN	${ }^{022}$
doubile move not	MvNL	499
move bit	моvв	${ }^{082}$
Move ilit	movo	${ }^{083}$
MULTIPLE BIT TRANSFE	хепв	062
block transfer	Xfer	070
block SET	${ }_{\text {BSET }}$	071
data exchange	хснб	${ }^{073}$
DOUBLE DATA EXCHANG	xcct	562
SINGEE WORD DISTREUUE	Dist	${ }^{080}$
data collect	coul	${ }^{081}$
MOVE To Register	Move	560
	movaw	561

Instruction	Mnemonic	Funcion
INCREMENT BINARY	++	590
DOUBLE INCREMENT	++	591
decrement tinaty	--	592
DOUBLE DECREMENT BINARY	--L	${ }_{593}$
Increment bci	+ + B	594
DOUBLE INCREMENT BCD	++BL	${ }_{595}$
decrement tci	--в	${ }_{596}$
Double NT BCD	-- ${ }^{\text {LL }}$	597

\square Symbol Math Instruction

Instruction	Mnemonic	Function
SIGNED BINARY ADD	+	400
DOUBLE SIGNED BINARY ADD WITHOUT CARR	+	401

BCD AD
COARY
Dovib
witheur

DOUBLE SIGNED BINARY ADD WITH CARRY	+ct	${ }^{403}$
BCD ADD WITHOUT CARRY	+ ${ }^{\text {+ }}$	
DOUBLE BCD ADD WITHOUT CARRY	+bl	

DOUBLE BCD ADD UT CARRY	+ BL	${ }^{405}$
BCC ADD WTH Catry	+ ${ }^{\text {c }}$	406

sicned bic
sabract
CARY

Double sined
BiNAR WTHTCA

DOUBLE SIGNED BINARY WITH CARRY	-ct	${ }_{413}$
BCD SUBTRACT WITHOUT CARRY	-8	

$\frac{\text { WTH CAR }}{}$

Double USIIGN
BiNAR MULTIPL

	$* B$	424
DOUBLE ECCD MUTTPIY	$*$ BL	${ }^{225}$

UnsIGNEE BMar oviof
Double usige
BINAR OVIVIE

BCD DIVIDE	/B	434
DOUBLE ECD DVIIE	/BL	435

- Data Conversion Instructions			Floating-point MathInstructions			Double-precision Floating-pointInstructions			\square Subroutine Instructions					
Instruction	Mnemonic	tion				Instuction	Mnem	${ }_{\text {lunction }}^{\substack{\text { code }}}$						
BCD-To-BINARY	${ }_{\text {Bin }}$	${ }_{0}$	Instruction	Mnemonic	${ }_{\text {cone }}^{\substack{\text { Funcion } \\ \text { code }}}$				Instuction	Mnemonic	cincole	Subroutine call	sbs	${ }_{091}$
DOUBLE BCD-TO-DOUBLE BINARY	BIL	058	FLOATNG TO 16-Bit	FIX	450	$\begin{aligned} & \text { Pouble fadans } \\ & \text { TO OEREES } \end{aligned}$	DEGD	${ }^{850}$	SUBROUTINE ENTRY	SBN	092			
			FLOATING To 32-Bit	FXXL	${ }_{4}^{451}$					Ret	${ }^{093}$			
BINAFY-To-Bco	вcD	${ }^{024}$	16-bit to floating	FLT	${ }_{4} 52$	Double cosine	SIND	${ }^{851}$	SUBROUTINE RETURN	мсво	099			
DOUBLE BINARY-TO-DOUBLE BCD	BCDL	059	32-BIT TO FLOATING	\&TL	${ }_{453}$		Cosd	${ }_{853}$		GSEN	${ }_{751}$			
				+	454	double tangent T	tand							
2 2' Complement	NEG	160	FLOATING-POINT SUBTRAC	-	${ }_{455}$	Double Arc Sine	AsIND	${ }^{854}$	GLOBAL SUBROUTINE ENTRY	GRET	${ }^{75}$			
DOUBLE $2^{\prime} \mathrm{S}$ COMPLEMENT	NEGL	161	flooting Point Mutirle		${ }_{456}$		atand	${ }^{855}$	GLOBAL SUBROUTINE RETURN	Gsss	750			
Doublers	SIGN	600		* ${ }^{\text {F }}$				${ }^{856}$						
data decooer	MLPX	076	FLOATING- POINT	F	${ }^{457}$	DOUBLE SQUARE ROOT	Sorto	${ }^{857}$	\square Interrupt Control Instructions					
data encooler	dMPX	077	${ }^{\text {degres }}$ (obiole	${ }_{\text {RAD }}$	${ }_{458}$	DoUBLEEXPONENT	EXPD	${ }^{858}$	Instuction	Mnemonic	cod			
AsCli convert	Asc	086	${ }_{\substack{\text { Radians } \\ \text { Dockes }}}^{\text {a }}$	DEG	459		-060	${ }^{859}$	SEt MTEREVUPT MASK	Msks	${ }_{690} 69$			
ASCII TO HEX	HEX	162				DOUBLE LOGARITHM								
COLUMN TO LINE	LINE	${ }^{063}$	Cosine	cos	460	DOUBLE EXPO- NENTIAL POWER	Pwbo	${ }^{860}$	Clear INTERUPT	$\mathrm{cu}^{\text {L }}$	691			
Line to column	colm	${ }_{0} 64$			${ }_{461}$					-1	693694			
SIGNED BCD-TO-	Bins	40	tangent	tan	${ }_{462}^{461}$	(evile symbol			ENabil interuyts					
Double sind	BISL	${ }^{472}$	$\begin{aligned} & \hline \text { ARC SINE } \\ & \hline \text { ARC COSINE } \end{aligned}$	Asin	$\begin{aligned} & 463 \\ & \hline 464 \\ & \hline 4 \end{aligned}$				\square High-speed Counter and Pulse Output Instructions					
	BISL	472												
$\begin{aligned} & \text { SIGNED BINARYTO- } \\ & \text { BCD } \end{aligned}$	8cos	${ }^{471}$	$\begin{aligned} & \text { ARC TANGENT } \\ & \hline \text { SQuaRE Root } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ATAN } \\ & \text { Sort } \\ & \hline \end{aligned}$	$\begin{aligned} & 465 \\ & \hline 466 \\ & \hline 46 \end{aligned}$	Table Data Processing Instructions			Instruction	Mnemonic				
	BSSL	${ }^{473}$	Floating-point Math Instructions						MODE CONTROL	"N1	${ }^{880}$			
							PRV	${ }_{881}$						
	GRY	${ }^{474}$				Instruction			Mnemonic	Functor				
			Instruction	Mnemonic	cin		Stack	SSET	${ }^{630}$		PRV2	${ }^{88}$		
\square Special Math Instructions			EXPONENT	$\frac{\text { ExP }}{\text { Lo6 }}$	$\begin{aligned} & 467 \\ & \hline 468 \\ & \hline 68 \end{aligned}$	$\begin{aligned} & \text { PUSH ONTO STACK } \\ & \hline \text { FRRST IN FIRST OUT } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \text { pusH } \\ \hline \text { FFFO } \end{array}$	${ }^{632}$	COMPARISON TABLE LOAD	ствь	${ }^{882}$			
Instruction	Mnemonic	Finction	LOGARITHM					${ }^{633}$						
BINAYY Root	вотв		$\begin{aligned} & \text { Exponential } \\ & \text { Power } \\ & \hline \text { Pow } \end{aligned}$	PWr	${ }_{840}$		LFO	${ }^{634}$	speed oute	sped	${ }^{885}$			
bCo sauare root	Rоот	072		$\quad+$$=F_{1}<>F_{1}$,$<F_{1}<=F$,				${ }^{631}$	SET PULSES PULSE OUTPUT	Sts	${ }^{886}$			
ARTHMEICIC Process	APR	069	$\underbrace{\substack{\text { a }}}_{\substack{\text { Floating Symbol } \\ \text { Comparson }}}$			SEt recorol location	Stre	${ }^{635}$			${ }^{887}$			
FLOATING POINT DIVID	oiv					ECoro numb	GET	${ }_{636}$	ACCELERATION CONTROL	acc	${ }^{888}$			
bit counter	вCNT	067				DATA SEARCH	sfch	181	ORIGIN SEACH	org	${ }^{889}$			
			FLOATING- POINT TO ASCI	FSTR	${ }^{448}$	SWAP BYTES FIND MAXIMUM	SWAP	${ }^{637}$	$\begin{aligned} & \text { ULSE WTH V VaRABLIE } \\ & \text { UUTF FACTOA } \end{aligned}$	pwn	${ }^{89} 1$			
Logic Instructions							max	182						
Instruction	Mnemonic	coinction	$\stackrel{\text { floating Point }}{ }$	fval	${ }^{449}$	FIND MNIM	Min	${ }^{183}$	\square Step Instruc	tions				
Locical and	anow	${ }^{034}$				SUM	sum	184 180	Instuction	Mnemonic	anction			
double logical ano	ANOL	610	Floating-poi	int Instru	uctions	stack siz read	ssum	${ }^{638}$	$\xrightarrow[\text { STEP DEENE }]{ }$	STEP	008			
Logical or	orw	035	Instruction	Mnemoric	Function	Stack data mead	sread	639	STEP STAAT	SNXT	009			
doubil Logical or	ormL	611												
ExClusive or	Xorw	${ }_{0} 036$	Double foating	FxD	${ }^{841}$	STACK data OUERWRITE	swRit	${ }^{640}$	\square Basic I/O Un	it Instru	ctions			
${ }_{\text {Dob }}^{\text {Double EXCLUSIVE }}$	xorl	${ }^{612}$	(e)	fxLD	${ }_{842}$	Stack data insert	sins	${ }_{641}$	Instuction	Mnemonic	(enction			
ExClusive nor	XNRW	037				ETE	SDEL	${ }_{642}$	IO REFRESH	IORF	${ }^{097}$			
Double ExClusive	XNRL	${ }^{613}$		DBL	${ }^{843}$	\square Data Control	ol Instruc	ctions	7-SEMENT DECODER	SoEc	078			
									Digral swich invut	DSw	210			
COMPLement	com	029	doublefloating	ОвL	${ }^{844}$	Instuction	Mnemonic	Fonction	tenkey input	TkY	211			
Double complement	comL	614			${ }^{845}$	PII CONTROL	PID	190	HEXADECIMAL KEY INPUT	Hку	212			
							${ }^{\text {PIDAT }}$	191	Matrix InPut	мтR	213			
			FLOATINGPOIN SUBTRAC	-	${ }^{846}$	LIMIT Control	Lnt	${ }^{680}$	7-SEEMENT DISPLAY	${ }^{\text {7SEG }}$	214			
						Dead bano control	Bano	${ }^{681}$						
			MULTIPLY	*	${ }^{847}$	DeAA ZONE CONTrol	ZONE	${ }^{682}$	$\begin{aligned} & \substack{\text { REEALILGENT IO }} \\ & \hline \text { REA } \end{aligned}$	${ }^{10 R D}$	222			
			$\begin{aligned} & \text { DoUBLE } \\ & \text { FLOATIIGGOINT } \\ & \text { DIVIE } \\ & \hline \end{aligned}$	10	${ }^{848}$	TMMEPPOPORTIONAL	${ }^{\text {TpO }}$	${ }^{685}$	INTELIGENT IO WRITE	Iown	${ }^{223}$			
			DOUBLE DEGREES TO RADIANS	RADD	${ }^{849}$	SCALING	scl	194 486		DLINK	${ }^{226}$			
						SCALING 3	scl3	${ }^{487}$						
						age	avg	195						

Serial Communications Instructions		
Instruction	Mnemonic	Function
PROTOCOL MACRO	PMCR	260
transmit	T×0	${ }^{236}$
recelve	R×0	235
TRANSMIT VIA SERIAL UNIT UNI	Txou	256
RECEIVE VIA SERIAL COMM	Rxou	255
CHANGE SERIAL PORT SETUP	stup	237

Instruction	Mnemonic	Funcid
NetWork Send	send	090
NETWORK RECEVE	RECV	098
delver command	Cmno	490
EXPLLCIT MESSAGE SEND	ExPlt	720
EXPLICIT GET ATTRIBUTE	Egatr	${ }^{21}$
EXPLICIT SET ATTRIBUTE	Esatr	${ }^{722}$
EXPLCIT WORD READ	ECHRD	${ }^{223}$
EXPLCTT WORD Wate	Echwr	124

Display Instructions

DISPLAY MESSAGE	ms6	046
$\begin{aligned} & \text { DISPAPAY-SEGMENT } \\ & \text { DATA } \end{aligned}$	sch	${ }_{0} 04$
$\underset{\substack{\text { CONTROL } \\ 7 \text { TSEGMENT }}}{ }$	Sctrl	

Clock Instructions

\square Debugging Instructions

Instruction	Mnemonic	${ }_{\text {Function }}^{\text {coide }}$
TRACE MEMORY SAMPLIN	trsm	045

\section*{\square Failure Diagnosis Instructions} | Instruction | Mnemonic | Function |
| :--- | :--- | :--- |
| cocid | | |

 $\substack{\text { FAlluge pont } \\ \text { CEETETION }}$

- Other Instructions

Instruction	Mnemonic	Function
SEt Cabry	sтc	${ }^{040}$
Clear carry	cıC	041
EXTEND MAXIMUM CYCLE TIME	wot	094
SAVE CONDITION FLAGS	ccs	282
LOAD CONDITION FLAGS	cct	283
CONVERT ADDRESS FROM CS	fram	284
conver adises	tocv	285

Block Program Instructions

Instructions		
Instruction	Mnemoric	Funcion
cooden		

Sruction	Mnemonic	${ }_{\text {Funcio }}$ code
BLOCK PROGRAM BEGIN	BPRG	${ }^{096}$
	Bend	${ }^{801}$
Block progatam PAUSE	BPPS	${ }^{811}$
BLOCK PROGRAM RESTAR	BPRS	${ }^{812}$
CONDITIONA	ccs	282

Task Control Instructions

Instruction	Mnemonic	come
TASK on	тком	820
TASK off	ткоғ	821

\square Model Conversion
Instructions

Instructio	Mnemonic	Funcie
Blocktran	Xerrac	565
SINGLE WORD	${ }_{\text {distc }}$	${ }_{566}$
data collect	couc	567
move bit	movic	568

\square Special Instructions fo
Speciaion Blocks
Function

Instruction	Mnemonic	${ }_{\text {Function }}^{\text {coide }}$
GEt Variable id	GETID	286

Ordering Information

\square CPU Units

CPU Unit	Specifications				Model	Standards
	Power supply	Output method	Inputs	Outputs		
CP1H-X CPU Units Memory capacity: 20 Ksteps High-speed counters: 100 kHz, 4 axes Pulse outputs: $100 \mathrm{kHz}, 2$ axes 30 kHz, 2 axes	AC power supply	Relay output	24	16	CP1H-X40DR-A	CE, N
	$\underset{\text { supply }}{\text { DC power }}$	Transistor output (sinking)			CPIH-X40DT-D	CE, N
		Transistor output (sourcing)			CP1H-X40DT1-D	CE, N
CP1H-XA CPU Units Memory capacity: 20 Ksteps High-speed counters: 100 kHz, 4 axes Pulse outputs: $100 \mathrm{~Hz}, 2$ axes $30 \mathrm{kHz}, 2$ axes Analog inputs: 4 Analog outputs: 2	AC power supply	Relay output	24	16	H-XA400R-A	CE, N
	DC powersupply	Transistor output (sinking			CP1H-XA40DT-D	CE, N
		$\underset{\substack{\text { Transistor output } \\ \text { (sourcing) }}}{ }$			CP1H-XA400T1-D	CE, N
CP1H-Y CPU Units Memory capacity: 20 Ksteps High-speed counters: $1 \mathrm{MHz}, 2$ axes $100 \mathrm{~Hz}, 2$ axes Pulse outputs: 1 MHz , 2 axes $30 \mathrm{kHz}, 2$ axes	$\underset{\text { scopply }}{\text { DC power }}$	Transistor output (sinking)	$\begin{gathered} 12 \\ \begin{array}{c} 12 \\ \text { line-driver input, } \\ 2 \text { axes } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ \begin{array}{c} \text { line-driver input, } \\ \text { liaxes } \end{array} \end{gathered}$	CP1H-Y200T-D (To be released soon.)	-

Name	Specifications	Model	Standards
RS-232C Option Board	For CPU Unit option port.	CP1W-CIFO1	CE, N
RS-422A/485 Option Board	For CPU Unit option port.	CP1W-CIF11	CE, N
Memory Cassette	Can be used for backing up programs or auto-booting.	CP1W-ME05M	CE, N

Expansion Units

Name	Output method	Inputs	Outputs	Model	Standards
Expansion //O Units	Relay	24	16	CPM1A-40EDR	CE, N
	Transistor (sinking)			CPM1A-40EDT	CE, N
	Transistor output (sourcing)			CPM1A-40EDT1	CE, N
	Relay	12	8	CPM1A-20EDR1	U, C, CE
	Transistor (sinking)			CPM1A-20EDT	U, C, N, CE
	Transistor output (sourcing)			CPM1A-20EDT1	U, C, N, CE
	-	8	-	CPM1A-8ED	U, C, N, CE
	Relay	-	8	CPM1A-8ER	U, C, N, CE
	Transistor (sinking)	-	8	CPM1A-8ET	U, C, N, CE
	Transistor output (sourcing)			CPM1A-8ET1	U, C, N, CE
Analog Input Unit	Analog (resolution: $1 / 6000$)	4	-	CPM1A-AD041	U, C, N, CE
Analog Output Unit	Analog (resolution: 1/6000)	-	4	CPM1A-DA041	UC1, CE
Analog I/O Units	Analog (resolution: 1/256)	2	1	CPM1A-MAD01	UC1, CE
	Analog (resolution: 1/6000)	2	1	(1) CPM1A-MAD11	U, C, N, CE
DeviceNet //O Link Unit	-	$\begin{aligned} & 32 \\ & \text { (/O link input bits) } \end{aligned}$	(I/O link input bits)	CPM1A-DRT21	U, C, CE
CompoBus/S IO Link Unit	-	$\stackrel{8}{\text { (I/O link input bits) }}$	(I/O link input bits)	CPM1A-SRT21	U, C, N, CE
Temperature Sensor Units	2 thermocouple inputs			CPM1A-TS001	U, C, N, CE
	4 thermocouple inputs			CPM1A-TS002	U, C, N, CE
	2 platinum resistance thermometer inputs			CPM1A-TS 101	U, C, N, CE
	4 platinum resistance thermometer inputs			(CPM1A-TS 102	U, C, N, CE

I/O Connecting Cable

Name	Specifications	Model	Standards
I/O Connecting Cable	80 cm (for CPM1A Expansion Units)	CP1W-CN811	CE,N

Note: An IO Connecting Cable (approx. 6 cm) for horizontal connection is provided with CPMIA Expansion Units

Programming Devices

Name	Specifications		Model	Standards
CX-One FA Integrated Tool Package	CX-One is a package that integrates the Support Software for OMRON PLCs and components. CX-One runs on the following OS S: Windows 98SE, Me, NT 4.0 (Service Pack 6a), 2000 (Service Pack 3 or higher), or XP CX-One Includes CX-Programmer Ver 6. \square and CX-Simulator Ver.1. \square For details, refer to the CX-One catalog (Cat. No. R134).	One license	CXONE-ALOTC-E	-
		Three licenses	CXONE-ALOOC-E	
		Ten licenses	CXONE-ALIOC-E	
	CX-Programmer and CX -Simulato can still be ordered individually in the following model number.			
CX-ProgrammerVer. $6 . \square$	Support Software for Windows OS: Windows 98SE, Me, NT 4.0 (Service Pack 6a), 2000 (Service Pack 3 or higher), or XP	One license	WS02-CXPC1-E-V6■	
		Three licenses	WS02-CXPC1-E03-V6ם	
		Ten licenses	WS02-CXPC1-E10-V6ם	
CX-Simulator Ver. $1 . \square$	Support Software for Windows OS: Windows 98SE, Me, NT 4.0 (Service Pack 6a), 2000 (Service Pack 3 or higher), or XP	One license	Ws02-SIIC 1 -E	-
Programming Device Connecting Cable for CP1W-CIF01 RS-232C Option Board(See note.)\qquad	Connects DOS computers, D-Sub 9-pin (Length: 2.0 m)	For anti-static connectors	xW2Z-200s-CV	-
	Connects DOS computers, D-Sub 9-pin (Length: 5.0 m)		XW2Z-500s-CV	
	Connects DOS computers, D-Sub 9-pin (Length: 2.0 m)		xw2z-200s-V	
	Connects DOS computers, D-Sub 9-pin (Length: 5.0 m)		xw2z-500s-v	
USB-Serial Conversion Cable (See note.)	USB-RS-232C Conversion Cable (Length: 0.5 m) and PC driver (on a CD-ROM disc) are included. Complies with USB Specification 1.1 On personal computer side: USB (A plug connector, male) On PLC side: RS-232C (D-sub 9-pin, male) Driver: Supported by Windows $98, \mathrm{Me}, 2000$, and XP		CSIW-CIF31	-

Note: Cannot be used with a peripheral USB porte. To connect to a personal computer via a peripheral USB port, use commercially-avilable USB cable (A or B type, male).

- Optional Products, Maintenance Products and DIN Track Accessories

Name	Specifications	Model	Standards
Battery Set	For CP1H CPU Units (Use batteries within two years of manufacture.)	CJIW-bato	CE
DIN Track	Length: $0.5 \mathrm{~m} ;$ Height: 7.3 mm	PFP-50N	-
	Length: 1 m ; Height: 7.3 mm	PFP-100N	
	Length: 1 m ; Height: 16 mm	PFP-100N2	
End Plate	There are 2 stoppers provided with CPU Units and I/O Interface Units as standard accessories to secure the Units on the DIN Track.	PFP-M	

Ordering Information

Category	Name	Specifications	Model	Standards
CP1H CPU Unit options	CJ Unit Adapter	Adapter for connecting CJ-series Special I/O Units and CPU Bus Units (includes CJ-series End Cover)	CP1W-EXT01	UC1, CE, N, L
CJ-series Special I/Q Units	Analog Input Units	8 inputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: $1 / 8,000$; Conversion speed: 250μ s/input max. (Can be set to $1 / 4,000$ resolution and 1 ms /input.)	CJ1W-ADO81-V1	
		4 inputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to 10 V , -10 to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: $1 / 8,000$; Conversion speed: 250μ s/input max. (Can be set to $1 / 4,000$ resolution and $1 \mathrm{~ms} /$ input.)	CJIW-ADO41-V1	
	Analog Output Units	8 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to 10 V) Resolution: 1/4,000; Conversion speed: 1 ms/output max (Can be set to $1 / 8000,250 \mu \mathrm{~s} /$ output)	CJIW-DA08V	
		8 outputs (4 to 20 mA) Resolution: 1/4,000; Conversion speed: $1 \mathrm{~ms} /$ output max (Can be set to $1 / 8,000,250 \mu \mathrm{~s} /$ output)	CJIW-DA08C	UC1, CE, N
		4 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: $1 / 4,000$, Conversion speed: $1 \mathrm{~ms} /$ point max.	CJIW-DA041	UC1, CE, N, L
		2 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: 1/4,000; Conversion speed: $1 \mathrm{~ms} /$ output max.	CJIW-DA021	
	Analog I/O Unit	4 inputs, 2 outputs (1 to $5 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V},-10$ to $10 \mathrm{~V}, 4$ to 20 mA) Resolution: 1/4000; Conversion speed: $1 \mathrm{~ms} /$ point max (Can be set to $1 / 8,000,250 \mu \mathrm{~s} /$ point)	CJ1W-MAD42	
	Process Input Units	4 inputs, B, J, K, L, R, S, T; Conversion speed: $250 \mathrm{~ms} / 4$ inputs	CJIW-PTS51	UC1, CE
		4 inputs, Pt100 Ω ((Js, IEC), JPt100 Ω, Conversion speed: 250 mss 4 inputs	CJIW-PTS52	
		2 inputs, B, E, J, K, L, N, R, S, T, U, W, Re5-26, PL $\pm 100 \mathrm{mV}$, Resolution: 1/64,000; Conversion speed: $10 \mathrm{~ms} / 2$ inputs	CJIW-PTS 15	
		2 inputs, Pt100, JPt100, Pt50, Ni508.4; Resolution: 1/64,000; Conversion speed: $10 \mathrm{~ms} / 2$ inputs	CJIW-PTS16	
		2 inputs, 0 to $1.25 \mathrm{~V},-1.25$ to $1.25 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V},-5$ to $5 \mathrm{~V}, 0$ to 10 V , -10 to $10 \mathrm{~V}, \pm 10-\mathrm{V}$ selectable range, 0 to $20 \mathrm{~mA}, 4$ to 20 mA	CJ1W-PDC 15	
	Temperature Control Units	4 loops, thermocouple input, NPN output	CJ1W-TC001	UC1, CE, N, L
		4 loops, thermocouple input, PNP output	CJ1W-TC002	
		2 loops, thermocouple input, NPN output, heater burnout detection function	CJIW-TC003	
		2 loops, thermocouple input, PNP output, heater burnout detection function	CJIW-TC004	
		4 loops, platinum resistance thermometer input, NPN output	CJIW-TC101	
		4 loops, platinum resistance thermometer input, PNP output	CJ1W-TC102	
		22 loops, platinum resistance thermometer input, NPN output, heater burnout detection function	CJIW-TC103	
		2 loops, platinum resistance thermometer input, PNP output, heater burnout detection function	CJIW-TC104	
	CompoBus/S Master Unit	CompoBus/S remote //0, 256 points max.	CJ1W-SRM21	
$\begin{aligned} & \text { CJ-series } \\ & \text { CPU Bus } \end{aligned}$Units	Controller Link Units	Wired (Shielded twisted-pair cable)	CJ1W-CLK21-V1	UC1, CE, N, L
	Serial Communications Units	1 RS-232C port and 1 RS-422A/485 port	CJIW-SCU41-V1	
		2 RS -232C ports	CJIW-SCU21-V1	
	Ethernet Unit	100Base-TX	CJ1W-ETN21	
	DeviceNet Unit	Functions as master and/or slave; allows control of 32,000 points max. per master.	CJ1W-DRM21	

> Read and Understand this Catalog
> Please read and understand this catalog before purchasing the product. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF RROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.
in no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, NSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of the product in the customer's application or use of the product.
Take all necessary steps to determine the suitability of the product for the systems, machines, and equipment with which it will be used.
Know and observe all prohibitions of use applicable to this product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE解 EOUIPMENT OR SYSTEM

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons. Consult with your OMRON representative at any time to confirm actual specifications of purchased product

DIMENSIONS AND WEIGHTS

Dimen
shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

[^0]: Note 1 : The voltage output and current output can be used at the same time for analog outputs, but the total output must not exceed 21 mA .2: The conversion time is the total time for 2 analog

